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Abstract

Workplace protection factors (WPFs) are intended to measure the ability of a respiratory 

protective device (RPD) to reduce contaminant exposure when used in the context of an effective 

respiratory protection program. In 1992, members of the American Industrial Hygiene Association 

Respiratory Protection Committee (RPC) published a review of important issues and 

considerations for measuring respirator performance in the workplace. The RPC recognized that 

respirator testing in workplaces can have a variety of objectives and endpoints, and that not all 

workplace measurements are WPFs. That paper addressed concerns in the general categories of 1) 

study objectives; 2) site selection; 3) subject selection and preparation; 4) sampling and analytical 

methods; and 5) data analysis. No specific protocol for measuring WPFs was recommended by the 

RPC, and attempts to reach a U.S. consensus on a WPF protocol since 1992 have not succeeded. 

Numerous studies have implemented the principles for WPF measurement described in the RPC 

paper. Modifications to the original recommendations have been made to reflect the current state 

of the art. This article describes what has been learned in recent years in each of the five categories 

identified in the 1992 discussion. Because of the wide variety of workplaces and work activities, 

contaminants and respiratory protective devices, a strict protocol is not appropriate for collecting 

WPF data. Rather, the minimum requirements for the collection and presentation of meaningful 

respirator performance data in the workplace are described. Understanding of these principles will 

permit useful RPD performance data to be generated.
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INTRODUCTION

The critical purpose of a respiratory protective device (RPD) is to reduce wearers’ inhalation 

of air contaminants from concentrations considered too high to those considered acceptable. 

Because requirements for RPD certification are based on laboratory tests using conditions 
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that are significantly different from workplace environments, testing RPD in the workplace 

represents a way to verify performance and assure wearer protection. In addition, data from 

workplace studies are sometimes used in setting assigned protection factors (APFs). The 

Occupational Safety and Health Administration (OSHA) defines APF as “… the workplace 

level of respiratory protection that a respirator or class of respirators is expected to provide 

to employees when the employer implements a continuing, effective respiratory protection 

program…” (1) Statistically, where sufficient data exist, APFs represent work-place 

protection factor (WPF) values that will be met or exceeded by most wearers during at least 

95% of their wearing periods.

To be a useful measure of RPD performance or for use in setting APFs, WPF measurements 

must be collected in a manner that accurately represents the protective capability of the 

device. The data should be presented in a manner that allows data analyses by interested 

third parties. Because of the diversity of workplaces and work activities, contaminants and 

respiratory protective devices, a strict protocol is not appropriate for collecting WPF data. 

This article reviews essential criteria for collecting meaningful RPD performance 

information in workplaces, and identifies minimum requirements for presentation of the data 

in a useful manner. It includes information to address the overall issue of respirator 

performance measurement, which the American Industrial Hygiene Association Respiratory 

Protection Committee (RPC) identified as a research priority in 2009.(2) The listing of 

research priorities was subsequently forwarded to the National Institute of Occupational 

Safety and Health (NIOSH) for consideration. This article is a result of collaborations 

between NIOSH and members of the RPC to address this recommended priority.

BACKGROUND

It is important to recognize two key principles before the collection or analysis of workplace 

RPD performance data:

• All RPD used in the United States must be selected, maintained, and used in the 

context of a comprehensive respiratory protection program. The elements of a 

minimally acceptable program have been codified since 1971 for most U.S. 

employers in the OSHA regulation, 29 CFR 1910.134 (1); other regulatory agencies 

have similar requirements.(3–5) Because only NIOSH-certified respirators are 

permitted by these regulations, only respirators that have passed all certification 

test requirements and received certification are candidates for WPF study. APFs do 

not apply to RPD used in the absence of a fully compliant RP program; less than 

the expected level of protection is anticipated in these situations.(1,6)

• While all workplace RPD performance testing involves measuring the air 

contaminant concentration outside (Co) and inside the device (Ci), not all 

measurement data collected reflect the protective capabilities of the device under 

evaluation. For example, wearer protection can be compromised if RPD are not 

properly selected and used, poorly maintained, or not worn for portions of the 

exposure period. In such cases, poor protection is due to deficiencies in the 

organization’s respiratory protection program rather than an inherent deficiency of 
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the device. To clarify this important distinction, the RPC developed, and 

subsequently updated, three definitions relevant to workplace RPD testing (7,8):

1. Workplace Protection Factor (WPF)

A measure of the protection provided in the workplace, under the conditions of that 

workplace, by a properly selected, fit-tested, and functioning respirator while it is correctly 

worn and used. WPF is a direct measurement of respirator performance capabilities in a 

specific work environment. It represents the workplace contaminant concentration outside 

the respirator (Co) divided by the contaminant concentration inside the respirator (Ci). Co 

and Ci are measured simultaneously only while the respirator is properly worn and used 

during normal work activities. Ci measurements made using respirators that are poorly 

maintained, improperly used, or not worn during the entire exposure period are 

inappropriate for WPF determination (see definitions for Effective Protection Factor and 

Program Protection Factor).

2. Effective Protection Factor (EPF)

A measure of the protection provided by a properly selected, fit-tested, and functioning 

respirator when it is worn for only some fraction of the total exposure period in the 

workplace. It is the ratio of the contaminant concentration outside the respirator to that in the 

air actually inhaled. It is determined by sampling outside the respirator and in the breathing 

zone during the total exposure period, regardless of whether the respirator is being worn. 

While the respirator is worn, breathing zone sampling is done from within the respirator. 

EPF is strongly influenced by non-wear time, regardless of the respirator’s WPF. EPF may 

also be estimated by correcting appropriately measured workplace protection factors (WPF) 

for the time that the respirator is not worn during the exposure period using the following 

formula. It can be validly applied only if the air contaminant concentration is relatively 

constant over the exposure period.

(1)

Where:

Ts = Shift or exposure duration (hr).

Tw = Number of hr respirator is worn.

Tnw = Number of hr that respirator is not worn.

3. Program Protection Factor (PPF)

An estimate of the respiratory protection provided to a worker in the context of a specific 

respirator program. It is defined as the contaminant concentration that the user would inhale 

if the respirator were not worn (Co) divided by the contaminant concentration inside the 

respirator as it is actually used (Ci). Ci may be estimated from biological monitoring as the 

airborne concentration expected to produce the measured biological index. PPF is an 
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estimate of the effectiveness of the complete respirator program rather than the performance 

capabilities of the respirator itself. It is affected by such factors as the following:

a. Wearers’ activities

b. User training and motivation

c. Proper respirator selection, maintenance, and storage

d. User training and fit-testing

e. Facial hair or other conditions that interfere with proper fit, and

f. Supervision, administration, and monitoring of the program.

If any of these or other program elements are deficient, the program protection factor will 

be adversely affected. (Authors’ note: Biological monitoring is not appropriate for 

estimating PPF for contaminants with the risk of skin absorption ingestion, or if there is a 

substantial background level in body fluids due to non-occupational sources).

Although workplace respirator testing has been done in the United States for more than 35 

years,(9–11) these definitions to properly categorize the test results were not formally 

developed until 1985.(7) However, the difference between RPD capabilities, i.e., WPF and 

EPF, were recognized by some early investigators.(10) Proper use of the terms above is 

necessary not only to understand workplace measurements but, more importantly, identify 

what steps are necessary to improve wearer protection: changing to a higher-performing 

RPD will likely not improve protection in a poor RPD program.

A paper by Johnston et al.(12) reviewed the “state of the art” in workplace RPD testing circa 

1990 and represented the first attempt to offer guidance on how workplace data should be 

collected and analyzed. The authors identified five considerations for workplace RPD 

performance testing:

• Study objectives

• Site selection

• Subject selection and preparation

• Sampling and analytical methods

• Data analysis.

Johnston et al. suggested that reaching consensus on these issues could eventually lead to 

standardized workplace RPD test protocols. They also listed 10 basic rules specific to 

collecting WPF data (Table I). A number of WPF studies published since 1992 have applied 

the principles discussed by the authors and used all or most of their recommendations.(13–24) 

These studies have revealed both the utility and limitations of the information and guidance 

provided in the Johnston et al. paper. The knowledge gained from those studies is the basis 

of this article, which is intended to supplement the earlier work by Johnston et al. Issues not 

addressed in this article default to the discussion and recommendations of the earlier work. 

In other cases, new recommendations are made to further improve the reliability of 

workplace RPD performance testing.
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METHODS

Papers with apparent relevance to workplace testing of RPD were drawn from the peer-

reviewed literature published over the last 40 years. Most papers reviewed came from one of 

three journals with occupational safety and health and/or respiratory protection emphasis:

1. Journal of Occupational and Environmental Hygiene and its predecessors 

published by the American Industrial Hygiene Association: AIHA Journal, AIHAJ, 

and American Industrial Hygiene Association Journal. The database further 

included Applied Industrial and Environmental Hygiene and Applied Industrial 

Hygiene, both published by the American Conference of Governmental Industrial 

Hygienists (ACGIH®).

2. The Annals of Occupational Hygiene, published by the British Occupational 

Hygiene Society.

3. Journal of the International Society for Respiratory Protection.

The search resulted in 48 studies of RPD performance in work environments. The total 

includes studies whose measurements were (or should have been) called EPFs or PPFs, as 

well as true WPF studies. Seventeen of the studies were published prior to 1992 and 31 were 

published in 1992 or later. Some of the studies conducted prior to 1992 followed protocols 

similar to the procedures recommended by Johnson et al., while several published after 1992 

used different methods. Studies that were not cited in the text of this article are included as 

an appendix.

STUDY OBJECTIVES

Johnston et al. noted that not all workplace RPD evaluations are intended to collect WPF 

data, and that clear statement of the study objectives is necessary for proper interpretation of 

the results. Consistent with the RPD performance terms defined above, the procedures for 

collecting data differ with the objectives of the study. For example, a study might be done to 

test the hypothesis that RPD in use reduce wearer exposures (Ci) from ambient 

concentrations (Co) above an occupational exposure limit (OEL) to an acceptable 

concentration inside the RPD. These data could be collected using EPF-, PPF-, or WPF-style 

protocols, although ethical considerations preclude EPF or PPF protocols if adverse effects 

from acute, potentially high overexposure are possible. Each protocol could demonstrate 

acceptable Ci exposures, but only the WPF procedure would be a valid indicator of RPD 

performance. Should the hypothesis be disproven in an EPF or PPF study, the overexposure 

could be due to any combination of underperforming RPD, lack of wear time, or other RP 

program deficiencies. Appropriate corrective action would not be apparent.

Other objectives for workplace testing of RPD include verification of a current APF for a 

particular RPD, or to estimate an entire distribution of workplace performance for a device. 

In either case only WPF protocols are acceptable. As will be shown later, the requirements 

for workplace Co differ for these two objectives.
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SITE SELECTION, SUBJECT SELECTION AND PREPARATION, SAMPLING 

AND ANALYTICAL METHODS

Johnston et al. addressed the concerns of site selection, subject selection and preparation, 

and sampling and analytical methods individually. However, each is related to and may be 

impacted by the others; they should be considered simultaneously.

Site Selection

A comprehensive listing of practical considerations for choosing a worksite for RPD testing 

is given in Johnston et al. In large part they are the concerns relevant to any industrial 

hygiene sampling program. Additional issues specific to RPD testing included types of RPD 

in use, completeness of the RP program, and compliance with fit-testing and training 

requirements. Johnston et al. reasoned that a complete, standing RP program was critical to 

the conduct of a WPF or EPF study. Emphasis was placed on potential subjects’ past 

training, fit-testing, and experience with the RPD to be tested. They believed that the level 

of experience could influence the outcome of the performance measurements. Although not 

stated, this implies that training and fit-testing alone are not sufficient to assure adequate 

performance, and that some unspecified amount of experience is necessary to achieve 

protection.

However, limited data suggest that this concern is unfounded. Janssen et al.(20) collected 

WPF measurements on 18 workers that included two newly hired subjects trained and fit-

tested by their employer during the study. All the WPF values were much higher than the 

APF for the full facepiece respirator tested, and only one of 52 Ci samples showed 

detectable lead contamination. In another study, workers who were inexperienced with the 

filtering facepiece respirator under investigation achieved WPF values in excess of the APF 

of 10 for the RPD.(21) In both studies the workers were continually observed to assure the 

RPD was continuously and properly worn, but there was no other intervention. It appears 

that initial training and fit-testing are effective and along with continuous, proper use (all of 

which are necessary program elements) are sufficient to assure representative RPD 

performance for workplace testing. Training and fit-testing provided by the employer and by 

the study investigators appear to have indistinguishable results.(13,20,21,24) Therefore, lack of 

a standing RP program and/or inexperienced RPD users should not be viewed as an obstacle 

to collecting acceptable WPF or EPF data. Nonetheless, investigators are obligated to 

discuss the need for an ongoing, effective RP program with the employer.

Subject Selection and Preparation

Beyond training, fit-testing, and proper RPD use, additional subject selection and 

preparation criteria for WPF measurements are pragmatic. Prospective subjects must be 

willing and able to wear multiple pieces of sampling equipment and safely do their jobs, 

comfortable with being observed continuously during test periods, and agree not to remove 

the RPD until sampling devices are stopped.
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Sampling and Analytical Methods

The single most important consideration in site selection is the presence of enough of an air 

contaminant to allow the desired Co/Ci ratios to be measured. (Note that while it is actually 

the gross amount of Co and Ci contaminant that can be collected that is important, e.g., 

mass, number of particles, these will hereafter be expressed as Co and Ci for convenience). 

Since all RPD performance measurements are simply ratios, the contaminant need not have 

an OEL.

The necessary Co is dependent on the study objective and the analytical methods available 

for that contaminant, as well as the analytical limit(s) of quantification (LOQ). (Note: The 

paper of Johnston et al. and many subsequent WPF studies used the term “detection limit” in 

lieu of LOQ. The latter is the more correct term, in that it indicates the lowest level at which 

contaminant can be measured with a known degree of confidence. It will be used throughout 

this article except when quoting Johnston et al.). For example, if the study objective is to 

demonstrate that RPD wearer Ci exposures are below an OEL, the analytical method need 

only be sensitive enough to detect concentrations at or below that value. This could be 

demonstrated with WPF, EPF, or PPF measurements. If the objective is to demonstrate that 

the existing APF for a device is adequate (e.g., 10 for a half facepiece), only WPF protocols 

are appropriate. In addition, with this objective the ratio of Co to the minimum quantifiable 

Ci must be at least equal to the APF to measure that value. For other types of respirators 

with higher APFs, higher ratios equivalent to the device APF are needed. Critically, when 

Co is near the minimum required to measure the APF, statistical analysis of these data must 

be done with caution, since the full distribution of Co/Ci ratios may not be known.

Much higher Co and a very sensitive analytical method are necessary to measure the full 

distribution of WPFs. This is critical because individual WPF measurements frequently 

exceed half and full facepiece APFs by many times.(13–16,18–22,24) Insufficient Co relative to 

the Ci LOQ can make the higher WPFs appear artificially low if, for example, the Ci LOQ 

(or some fraction of it) is substituted for Ci samples below that value to calculate WPFs. 

Very high WPF measurements are not unexpected. Quantitative fit factors (i.e., laboratory 

measurements of Co:Ci ratios using specific procedures) of several hundred to several 

thousand are routinely measured with half facepieces,(25) and there is no inherent reason the 

fundamental fit of the facepiece should be poorer in a workplace than in a fit-testing 

environment. In this context, fundamental fit refers to the basic relationship established 

between the facepiece and the wearer’s face when a respirator is donned.(26) It has been 

suggested that vigorous work activities causing momentary breach of the faceseal may 

account for a significant portion of the Ci measured in WPF studies.(13,14,20–22,24) Some 

evidence also suggests that work activities more closely resembling fit-test exercises may be 

associated with higher WPFs.(22,24)

Johnston et al. suggested the following for minimum Co acceptance criterion, although the 

reason given was to account for poor analytical confidence at or near the analytical detection 

limit. It also appears to be a “reminder” that industrial hygiene samples must be corrected 

for blank contamination, which is especially important for samples near the LOQ:
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This criterion is more broadly (and simply) stated as:

This is true because industrial hygiene sampling and laboratory analysis procedures 

routinely require the use of blank samples, and blank correction is a necessary part of data 

interpretation. The revised criterion is advantageous in that it does not restrict potential WPF 

worksites to those with contaminants whose presence is measured in mass. For example, 

particles measured by count or by surface area are potential challenge agents. Unlike the 

original criterion, it is also useful in site selection: mean field blank values are not known 

until after samples are collected. Additionally, the revised criterion is applicable when using 

direct reading instruments such as particle counters that do not require blank samples. In 

these situations the original criterion cannot be applied.

Subsequent studies have suggested higher minimum outside contaminant levels to allow 

more of the WPF distribution, if present, to be measured:(24)

Still higher levels are desirable to confidently measure the full WPF distribution. However, 

even the “100X” criterion is hard to satisfy for RPD with high APFs, e.g., supplied air 

hoods, because exceptionally high contaminant levels are necessary. It may be difficult or 

impossible to measure the upper end of the WPF distribution for these devices. However, in 

some cases longer sampling times and/or higher flow rates can reduce this problem.

Johnston et al. observed that workplace sample rates of 1–2 L/min were commonly used, “to 

avoid significant pressure changes inside the respirator facepiece.”(12, p.708) Neither the flow 

rate above which these pressure changes might be expected, nor what pressure change was 

considered “significant,” was specified. Subsequent studies have used flow rates up to 10 

L/min without a discernible effect on WPFs.(27–29) Pressure drop of current NIOSH-certified 

U.S. particulate respirator filters is low, typically on the order of 10 – 20 mm water for N95 

and P100 classes, respectively, at a flow rate of 85 L/min.(30) Because pressure drop 

decreases directly with decreased flow rate, the measurements at 10 L/min will be 

significantly lower than these values.

It has also been shown that increased negative pressure within a facepiece does not increase 

faceseal leakage in properly fitted respirators,(31,32) so flow rates up to 10 L/min are not a 

concern for that reason. Furthermore, flow rates ≤10 L/min are a fraction of both inhalation 

flow(33) and the flow rate at which particle filters are currently tested for NIOSH 

certification in the United States.(34) Published data demonstrate they will not significantly 

increase penetration for current NIOSH-certified U.S. filters or their equivalents.(35,36) 
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Nonetheless, if there is doubt or if significantly higher flow rates are considered, penetration 

measurements should be made using particle sizes representative of those found in the 

workplace. Potential for Ci sample bias induced by the higher flow rate must also be 

investigated. If either is found, a lower flow rate should be considered or corrections made 

to Ci measurements, as appropriate. Additionally, sample flow rates for gas phase 

contaminants may be limited by the sample collection media, e.g., the flow rate must allow 

adequate residence time for activated charcoal and other solid sorbents.

Johnston et al. noted that analytical methods must be extremely sensitive and specific to 

detect very small amounts of Ci contamination. This also requires that Ci samples be 

handled carefully to avoid contamination that could add a significant negative bias to WPF 

values. As noted earlier, blank correction of Ci samples collected on media such as filters 

may be necessary. Because people are known to generate and exhale aerosols from the 

respiratory tract,(37,38) Ci measurements made with size-selective particle counters should 

also be appropriately corrected. This necessitates the characterization of each test subject’s 

respiratory aerosol generation across the particle size ranges to be measured. It is also 

critical that subjects refrain from smoking or workplace particle exposure for at least 1 hr 

before characterization or workplace sampling.

Similar precautions apply when gas or vapor contaminants are considered as challenge 

agents for workplace testing. The period of time that test subjects might exhale the 

contaminant from previous inhalation or skin absorption of the contaminant of interest must 

be determined, and an appropriate post-exposure interval determined to allow the exhaled 

breath to clear. In other cases the exhaled breath concentration may be shown to reach an 

equilibrium concentration, and adjustments made to Ci to correct for this “background” 

contaminant exhaled by test subjects.(39,40) Non-specific analytical methods, e.g., 

gravimetric, must be used with great caution since Ci can be biased by sweat, sputum, and 

other worker-generated materials.(12,14)

Most WFP studies published in the United States have used Co and Ci measurements “as 

reported” to calculate WPFs.(13–24, 28,29) Nonetheless, some investigators have suggested 

positive corrections to Ci measurements to account for sample losses such as retention of 

particles in the respiratory tract, respirator dead space, and loss of particles on cassette 

walls.(27,41) While theoretically correct, some of the suggested corrections rely on models 

using assumptions that may be incorrect in the workplace. Lung retention models require 

assumptions concerning worker size, airway structure, and respiration rate, and also require 

knowledge of the particle size distribution inside the RPD. When Ci aerosols are collected 

on filters, there is no practical way to measure their size distribution, which in most cases 

will differ from the ambient size distribution.(42,43)

Laboratory studies using faceseal leaks of fixed diameter, length, and shape have shown that 

particles of different sizes and shapes penetrate those leaks with disparate 

efficiencies.(42, 44–48) Hinds and Bellin developed a model to estimate penetration of 

workplace aerosols through filters and faceseal leaks as a function of particle size, but its 

leak size estimate assumes a constant leak based on the worker’s fit factor measured during 

quantitative fit-testing (QNFT).(49) Both QNFT(50,51) and WPF(13,21,22,24) studies conducted 
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after the model was developed have shown that the “fixed leak” assumption is likely 

incorrect for individuals wearing RPD. Several WPF studies have found particles >10 μm on 

Ci filters; their presence has been attributed to relatively large, dynamic leaks that are not 

expected to be particle size selective.(13,21,22,24) It is likely these dynamic leaks can exist 

either in conjunction with, or in the absence of. fixed leaks.(21)

It has also been demonstrated that streamlining and incomplete mixing of air in a tight-

fitting facepiece can significantly affect the amount of material collected by a Ci sample in 

both QNFT and WPF measurement. That is, the Ci sample can indicate a greater or lesser 

contaminant concentration than the RPD wearer actually inhales.(52,53) This phenomenon 

adds uncertainty to the correction of Ci for lung retention. However, streamlining effects 

were determined using single or combinations of fixed leaks. It is not known how the 

presence of dynamic faceseal leakage affects the mixing of air within the RPD, so its effect 

on the Ci is also unknown. Location of the Ci sample probe specified by Johnston et al. 

remains the preferred method to minimize potential biases due to in-facepiece streamlining. 

In summary, correction of Ci samples for respiratory tract deposition must be done with 

considerable caution and full understanding and disclosure of the uncertainties that can 

affect the estimate. It may be wise to limit this correction to studies in which the Ci particle 

size distribution is actually measured, as is possible in the case of samples collected with 

appropriate particle counting instruments.

To investigate the need to correct Ci samples for cassette wall losses, Myers et al.(13) 

measured the losses for zinc in a WPF study and found the them to be very small (~6% of 

the Ci) mass. The amount of mass on the cassette walls did not correlate with mass on the Ci 

filter (R2 = 0.001). Nonetheless, more recent studies of cassette wall losses for routine 

workplace samples, i.e., the equivalent of Co samples in workplace studies, have lead OSHA 

to conclude “… wall deposits can often be a large and inconsistent fraction of the total 

sample.”(54, p. 734) The OSHA authors also noted that it is not possible to apply a correction 

factor to account for wall losses. As a result, OSHA’s laboratory now requires that internal 

cassette walls for all metal samples be wiped, and any mass collected included in the 

analytical result. The NIOSH Manual of Analytical Methods also suggests this practice.(55) 

Thus, future WPF studies using standard filter cassettes should include wiping the internal 

walls of both Co and Ci samples. Any contaminant found on cassette walls should be 

included in the respective Co and Ci masses. Because the amount of material lost to cassette 

walls is highly variable, it is not possible to determine if results of previous studies might 

have been affected.

Importantly, when direct reading instruments, airborne biological contaminant sampling, or 

other non-standard industrial hygiene laboratory analytical methods are used, sampling and 

analytical errors, as well as quantification limits, must be determined and stated by 

investigators.

Data Presentation and Analysis

Consensus does not yet exist on the optimal method for statistical analysis of RPD 

workplace performance measurements, and this article does not advocate a specific 

statistical method. However, it can be said that most WPF studies published in the United 
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States have used the lower 5th percentile point estimate of a log-normal WPF distribution as 

a plausible and conservative value for an APF for the class of device under 

evaluation.(14–16,18–22,24,27–29) OSHA also used this method to establish several legally 

mandated APFs for several types of RPD.(56)

Complete presentation and understanding of the sampling data are critical to any statistical 

analysis. Johnston et al. identified criteria for excluding data from the analysis, which are to 

be established prior to collecting workplace performance measurements. These criteria 

include sampling pump failure, Ci sample contamination, e.g., removal of the RPD during 

sampling, low Co, and less than continuous subject observation. Data presentation should 

include, at a minimum, sample duration, Co and Ci results and WPF estimate for every valid 

sample pair to facilitate understanding and analyses by third parties. Because of the 

uncertainties associated with sampling and analysis and, in particular, in-facepiece sampling, 

in most cases WPFs should be rounded down to no more than two significant figures. The 

use of decimal places overstates the precision of workplace RPD measurements and is never 

appropriate in the presentation of WPFs.

Because RPD performance in WPF studies may be better than reflected by their APF, it is 

not uncommon for results to include a significant number of Ci samples with no detectable 

contamination. In such instances the treatment of these samples in the data analysis must be 

carefully considered and clearly explained. While substitution of an analytical LOQ or a 

fraction thereof has been common practice, random effects, nonparametric, and censoring 

regression models have also been used.(29,57,58) When most or all Ci samples in a study are 

below the quantification limit, as is often the case in studies of high-performing 

respirators,(17,20,23,24) meaningful WPF distributions cannot be calculated. In these cases, 

reporting WPFs as values “greater than” a minimum value calculated using the 

quantification limit as the Ci mass (for example) may be most appropriate: This process 

avoids bias and error introduced by assumptions regarding the Ci distribution or the 

expected level of performance (APF) for the device.

Other data interpretation considerations are relatively new and must also be resolved. Most 

workplace RPD performance measurements to date, including WPFs, have been collected as 

integrated samples over periods of approximately 1 to 2 hr, using traditional industrial 

hygiene sampling and laboratory analytical methods.(13–24) In at least one study, work shift 

time-weighted average (TWA) WPFs were calculated.(21) These practices were clearly 

appropriate for materials with OELs expressed as 8-hr TWAs. However, in recent years 

several investigators have collected workplace RPD performance measurements using direct 

reading instruments (e.g., particle counters) and biological sampling methods.(27–29) In these 

studies, samples are usually collected only for some fraction of a work period, e.g., the first 

and last 15 min of a 60-min work period. This raises the traditional industrial hygiene issue 

of assuring such samples are representative of the “true” exposures and WPFs. Secondly, a 

significant departure from traditional workplace testing in these studies is the calculation of 

WPFs for specific particle size fractions and for specific organisms, as well as integrated 

WPFs for all particle sizes. At this time it is not known how these values should be 

interpreted or compared with WPFs collected using more traditional methods, nor is their 

industrial hygiene significance clear.
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ADDITIONAL RESEARCH NEEDS

To date, most workplace studies have measured RPD performance against particulate 

contaminants.(13–24) It has been assumed (as reflected by current APFs) that RPD 

performance is equivalent for gas and vapor RPD of the same class. More workplace studies 

with gas-phase contaminants are necessary to confirm or refute this assumption. As noted 

earlier, these contaminants may require development of reliable methods to quantify and 

correct for skin absorption and possible release of contaminant in subjects’ exhaled breath. 

In addition, the need for optimal in-facepiece sampling and analytical methods for gas-phase 

contaminants was identified by Johnston et al. These issues are not yet fully resolved.

Because worker exposures and use of RPD have evolved to include materials such as 

engineered nanoparticles and infectious bioaerosols for which exposure conditions and 

metrics are largely unknown, these are critical issues in RPD performance measurement. It 

is likely that airborne concentrations will be low relative to traditional industrial 

contaminants.(59–61) Thus, existing sampling and analytical methods may require 

modification and validation at extremely low quantities. Development and validation of 

small, field-serviceable instruments to measure Co:Ci ratios for these contaminants will 

likely be necessary. Sampling methods for bioaerosols must be able to differentiate between 

infectious and non-infectious particles to gain the acceptance of WPF measurements by 

those outside the industrial hygiene community.

Finally, as RPD performance improves and exposure limits are lowered, higher flow rates 

for in-facepiece samples will become a necessity. Flow rates above 10 L/min should be fully 

explored to determine potential effects on inlet probe performance and in-facepiece sample 

bias. It may also be possible to determine a maximum acceptable sampling rate for each 

class of RPD.

CONCLUSION

Workplace RPD testing can provide valuable information on worker exposures, RPD 

performance, and RP program efficacy. Knowledge gained over the past 20 years has 

refined and clarified measurement techniques and understanding of RPD performance. 

Because the use of RPD, work-places, and exposures are variable and evolving, a restrictive 

protocol for WPF measurements is not appropriate. A full understanding of the principles 

underlying the data collection requirements allows flexibility and adaptability of methods 

for RPD performance assessment.
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TABLE I

Johnston et al. Basic Rules for Workplace RPD Studies

1 Prior to sample analyses, invalidate sample sets affected by sampling problems, such as leaky probes, loose sampling devices, loose 
hoses, malfunctioning pumps, removal of the respirator while pumps were running, or other observations that indicate the protocol 
was not met.

2 After sample analyses, reject sample sets with insufficient inside or outside sample loading or unacceptable analytical precision.

3 Use the mean value of field blanks to correct inside and outside sample loadings.

4 Use corrected sample loadings to calculate concentrations and protection factors. Be sure proper terminology is used (i.e., WPF as 
opposed to EPF, PPF, and so forth).

5 Consider whether corrections are desirable for lung retention. Determining factors may include sampling strategy used and type of 
contaminant.

6 Calculate appropriate measures of distribution, such as geometric means, geometric standard deviations, and fifth percentiles.

7 Identify potential outliers. Investigate reasons. Retain or reject data points in question.

8 Examine data to determine if protection factors generated are independent of outside sample loading. If not, re-evaluate amount of 
mass collected.

9 Test for differences among respirators, test subjects, observers, operations, and days as appropriate for the study design.

10 Define any problems encountered with data analysis that may make the results unsuitable for defining protection factors. Be sure to 
describe clearly conditions for which the study may be relevant. Avoid over-interpretation of results.

Source: (12)
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